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An elementary hierarchical theory of vision



‘What’s up’ in a serial pathway?
Lamme & Roelfsema (2000)



ascending connection

The laminar connectivity basis of hierarchical relationships between cortical areas

V2 V5



The laminar connectivity basis of hierarchical relationships between cortical areas

descending connectionV2 V5



The laminar connectivity basis of hierarchical relationships between cortical areas

‘intermediate’ connectionV6 V5



Felleman & Van Essen (1991) [ref. 1]

A  systematic hierarchy can only be 
constructed if the ‘rules’ of laminar 
connectivity are universal:

1.  Distinct patterns of termination:
forward pathways terminate in layer 4
backward pathways terminate in layers 1 & 6.

2. Reciprocity:
if area ‘A’ sends a forward output  to area ‘B’,  then ‘B’

sends a backward output to ‘A’.
- area B is termed a ‘higher’ area

3. Transitivity:
if area ‘B’ is higher  than area ‘A’,
and area ‘C’ is higher than   ‘B’
-- then area ‘C’ will also  be found to be higher than ‘A’. 

.





The ventral visual pathway... a chain of areas achieving object recognition

Area
V1

F o r m
V i s i o n



‘simple’ RF

‘simple’ cells

‘complex’ cell

‘complex’ RF

concentric
(e.g. layer 4)

‘simple’ cell

Hubel & Wiesel:   hypothesis for construction of ‘simple’ and ‘complex’ receptive fields 



Recordings
in area V2 

Von der Heydt &
Peterhans (1989) [ref. 2]

responses to illusory contours



Illuminator

digital   camera

raw image of 
cortex surface
(e.g. area V1)

630nm

image
analysis

e.g. false-colour
orientation map

Visual display
e.g. drifting gratings
(variable orientation)

Pan et al  (2012)  Optical imaging of illusory contour responses: V1, V2 & V4 [ref 3]
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Pan et al  (2012)  Optical imaging of illusory contour responses: V1, V2 & V4 [ref 3]

Domain

Optical imaging of the superficial layers of
cortex across area V1, V2 and V4 reveals
differences in these areas’ population
responses:

Orientation-tuned mechanisms in V1 and
V2 respond preferentially to local contours
(i.e. the short vertical and horizontal lines in
the illusory contour stimulus);

Orientation-tuned mechanisms in V4
respond preferentially to the global, illusory
contours in the illusory contour stimulus.



45 135

luminance grating

V4
V2

V1

1 mm

Pan et al  (2012)  Optical imaging of illusory contour responses: V1, V2 & V4 [ref 3]

Orientation map of V4:
orientation domains at 30°
intervals 



The ventral visual pathway...

Area V4

F o r m
V i s i o n



Neural  response is coded 
by the blue-red ‘heat’ scale.

Polar  gratingsCartesian  gratings Hyperbolic  gratings 

spike sec-1

The average response (across the sampled population of V4 neurons)  to 
both forms of  curved gratings was far greater than the response to linear 
gratings.

CONCLUSION: V4 shows the development of selectivity for curvature.

Gallant et al. (1996) [ref 5]

V4 neurons tested with Cartesian,  polar and hyperbolic gratings



Some cells were 
highly selective 
within this 
stimulus space...

The  response of 
the neuron is 
coded by the 
blue-red ‘heat’
scale.

Cell  ‘2H5E0’ was 
selectively responsive 
to hyperbolic gratings 
only;

Cell  ‘2H2I0’ was 
selective for cartesian
gratings.

spike sec-1

spike sec-1

Gallant et al. (1996) [ref 5]

V4 neurons tested with Cartesian,  polar and hyperbolic gratings



...other neurons  
were less selective.

The average response 
to both forms of  
curved gratings was 
greater than the 
response to linear 
gratings.

spike sec-1

spike sec-1

Gallant et al. (1996) [ref 5]

V4 neurons tested with Cartesian,  polar and hyperbolic gratings



Model of object recognition within full ventral visual pathway 
Cadieu, Poggio et al (2007) [ref 9]

- But models solely 
forward connections,

not 
backward conections !



‘simple’ RF

‘simple’ cells

‘complex’ cell

‘complex’ RF

concentric
(e.g. layer 4)

‘simple’ cell

Hubel & Wiesel:   hypothesis for construction of ‘simple’ and ‘complex’ receptive fields 

Cadieu, Poggio:  ‘Selectivity’ operation creates specificity of response

Cadieu, Poggio:  ‘Max’ operation creates invariance of response 

= Logical   ‘AND’

= Logical   ‘OR’



Model of  ‘S2’ neuron 

Pooled ‘C1’ inputs

Model of object recognition within
full ventral visual pathway 
Cadieu et al (2007) [ref 9]

C2

S2 S2S2

S2

S2

S2
S2

S2

S2

Actual response of V4 neuron Model response of C2 neuron 

Pasupathy & Connor (2001) [ref 10]

Shape representation in V4:  position-
specific tuning for boundary conformation.



The ventral visual pathway...

Areas TEO & TE - known together as ‘IT cortex’ (inferior temporal)

F o r m
V i s i o n



Tanaka et al (1991/2003) [ref. 6]    complex object sensitivity of IT cells

The ‘image reduction’ method



Tanaka et al (1991) [ref.6] 

complex object sensitivity of IT cells



‘size invariance’

Tanaka et al (1991) [ref.6] 

complex object sensitivity of IT cells



Tanaka et al (1991) [ref.6] 

complex object sensitivity of IT cells



Tanaka et al (1991) [ref.6] 

complex object sensitivity of IT cells



Tanaka et al (1991) [ref.6] 

complex object sensitivity of IT cells



combination of colour 
& form selectivity 

Tanaka et al (1991) [ref.6] 

complex object sensitivity of IT cells



Tanaka   distributed code for object representation
(as opposed to ‘Grandmother’ cells)

Tanaka’s model of  IT cortex 
- nearby columns have similar properties

broad categorisation mammal
comparison

dog

beagle

narrow
comparison identification ‘Snoopy’

What is the neural basis of object rcognition...?

Gauthier & Tarr (2016) Visual Object Recognition (review)
“The exact and fine-grained features of object representations
are still unknown and are not easily resolved – as illustrated by
our failure as a field to come up with a comprehensive model of
the recognition process”



Desimone  et al   1984 [ref. 8]   STS cells sensitive to face stimuli 



Desimone  et al   1984 [ref. 8]   STS cells sensitive to face stimuli 



Tsao et al  (2006)    Face processing centres in STS observed by fMRI 

Inferotemporal cortex 

Collation of face sensitive cell sites
c. 1992

‘face patches’ revealed by fMRI

Superior
Temporal

Sulcus



macaque human

Posterior lateral

Middle lateral

Middle fundal

Anterior fundal
Anterior lateral

Anterior medial

Tsao et al (2008) [ref 12] Comparing face patch systems in macaques & humans



ML & MF

AL

AM

1 cm

8 face view angles

1

2

.

.

.

.

.

.

.

25 different subject identities

Recordings in  4 patches:

Stimuli Neurophysiology

Freiwald & Tsao (2010) [ref 13]

Face neurons: (a) view selectivity & view invariance;
(b) individual face selectivity. 



ML/MF

AL

AM

Friewald & Tsao (2010) [ref 13]

Face neurons: (a) view selectivity & view invariance;
(b) individual face selectivity. 
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Friewald & Tsao (2010) [ref 13]

Hierarchical model

ML/MF  patches
‘View selective’ 
latency = 88 msec

AL  patch
‘View symmetrical’ 
latency = 104 msec

AM patch
‘View invariant’ 
latency = 124 msec



LATERAL
INHIBITION

Recursive  inhibition 
enhances subject  specificity

Friewald & Tsao (2010) [13]

Hierarchical model

ML/MF  patches
‘View selective’ 
latency = 88 msec

AL  patch
‘View symmetrical’ 
latency = 104 msec

AM patch
‘View invariant’ 
latency = 124 msec



Visual evidence seeking an explanation…

Visual hypothesis seeking corroborative evidence



Rubin’s Vase

Danish psychologist 
Edgar Rubin (1915)

Necker Cube

Swiss Crystallographer 
Louis Necker (1832)

Face mask illusion

Perception as an active process of ‘hypothesis testing’...

What we perceive is not invariably determined by what we see (i.e., by the image 
formed on the retina):

Ambiguous / bistable percepts;

Illusions of 3D depth;

Prior assumptions about the scene
*

‘illumination from 
above’ prior



‘error’ units

‘coding’ units

or  ‘expectation’ units

prediction error = sensory data - prediction

prediction =  the current perceptual hypothesis

Predictive Coding  – an information processing theory requiring reciprocal exchange of forward & backward signals



PREDICTOR:
L profile SUCCESSOR

PREDICTOR:
R profile SUCCESSOR

PREDICTOR:
frontal view SUCCESSOR

9 Training pairs 
comprising face images of 
3 different views (0° 60° 300°);
18 different identities (A-R).

TRAINING

TESTING Predictor and successor stimuli were recombined in different pairings, creating violations of expected identity,
expected view, or expected identity & view.

BUT – the authors classified these violations in terms of the predictor stimulus, as opposed to the sucesssor stimulus;
i.e. test stimuli were compiled such that the predictor “differed from the successor’s original training partner in identity,
view, or both”. [ - see examples on following slide].

Why is this wrong?
No violation of expectation occurs at the time of presentation of the predictor stimulus. Such violations only arise upon
presentation of the successor stimulus. Predictive coding interprets the response of (some) cells to the successor
stimulus as an ‘error’ signal, encoding its difference to the expected successor stimulus.
This is quite different to supposing that the response to the successor stimulus encodes a retrospective ‘error’ in the
predictor stimulus, as required by the logic of the authors’ experimental design.

Schwiedrzik & Freiwald (2017) [ref 16]    Neural signalling of prediction errors in  face patch ML

30-day training period



expected successor
(given the tested predictor)

view & identity violation

‘expected’ predictor
(given the tested successor)

identity violation

view & identity violationview & identity violation

view violation

N*

view violation ?

Authors’ experimental  logic Valid experimental  logic !Example experimentally 
tested stimulus pairings

predictor successor

not a trained predictor,
but its mirror-image…

- . … so, posssibly the monkey expects to see 
the mirror image of the expected identity ?

trial type:trial type:

Schwiedrzik & Freiwald (2017) [ref 16]    Neural signalling of prediction errors in  face patch ML



PREDICTOR:
L profile SUCCESSOR

PREDICTOR:
R profile SUCCESSOR

PREDICTOR:
frontal view SUCCESSOR

9 Training pairs 
comprising face images of 
3 different views (0° 60° 300°);
18 different identities (A-R).

TRAINING

TESTING EXPECTED PREDICTOR ‘identity violation’: e.g. authors used DN or FN in place of the trained pair EN;
- but D predicts M, and F predicts O, so these trials are actually ‘identity & view violations’, in terms of the EXPECTED SUCCESSOR;
- the same is found for all possible substitute predictors for all trained stimulus pairs;
- hence, all EXPECTED PREDICTOR ‘identity violation’ trials were ‘view & identity violations’, in terms of the EXPECTED SUCCESSOR.

EXPECTED PREDICTOR ‘identity & view violation’: e.g. authors used AN, BN, CN, GN, HN or IN  in place of the trained pair EN;
- B and H predict the same 60° view as seen in N; but A, C, G and I predict a different view to N;
- the same 2:4 ratio of same : different is found for all possible substitute predictors for all trained stimulus pairs;
- hence, two-thirds of EXPECTED PREDICTOR  ‘view & identity violation’ trials were equally ‘view & identity violations’, in terms of the EXPECTED SUCCESSOR,
But one third of EXPECTED PREDICTOR  ‘view & identity violation’ trials were ‘identity violation’ trials, in terms of the EXPECTED SUCCESSOR.

EXPECTED PREDICTOR ‘view violation’: e.g. authors used E*N (E* = mirror-image, or 300° version of E) in place of trained pair EN;
- similarly, D*M, F*O, G*P, H*G and I*R substitute a mirror-image view for the trained view;
- but A*J, B*K and C*L require substitution of a 60° or 300° profile in place of a 0° frontal view;
- none of A*, B*, C*, D*, E*, F*, G*, H* or I* are predictor face images used in training; the nature of the monkey’s expectation is thus uncertain.
- hence, some of these trials might (or might not) act as view violation trials, in terms of the EXPECTED SUCCESSOR, but with weaker expectation at best.

Schwiedrzik & Freiwald (2017) [ref 16]    Neural signalling of prediction errors in  face patch ML

30-day training period
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‘VALID LOGIC’:  
100%  view violation
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‘VALID LOGIC’:  
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Indeterminate  view violation
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non-preferred view 
(of same successor stimulus in each condition)

= view & 
Identity
violation

?
E*300°

‘view 
violation’
condition

= view
violation ?

Schwiedrzik & Freiwald (2017) [ref 16]    Neural signalling of prediction errors in  face patch ML



Bell et al. (2017) [ref 17]    Neural encoding of stimulus probability in inferior temporal cortex

Task: monkey is shown an artificially degraded
(‘low-noise’ or ‘high-noise’) image, of either a
face or a fruit, and subsequently a choice
display to indicate which it thinks it has seen.
Correct responses are rewarded.

Low-noise 
face stimulus

Plots of probability of selecting the ‘face’ option 
against probability that the cue stimulus was a face.

70%

30%

52%
46%

Behaviour

Trials were grouped in five blocks with varied probability of
displaying the face stimulus: p(face) = 0.0, 0.25, 0.5, 0.75 or 1.0).

The monkey ‘learns’ these probabilities, and adjusts its responses
accordingly. E.g. in the high-noise condition it poorly discriminates
face v fruit (52% correct selection of ‘face’ and 54% correct
selection of ‘fruit’ at p(face) = 0.5) but the slope of the red and blue
lines show that it does select the face more (or less) often in blocks
with higher (or lower) p(face).

This demonstrates, behaviourally, that monkeys form an
‘expectation’ of seeing a face that adapts to the experimental
regime.

Is it possible to find a neural encoding of this expectation ?



Bell et al. (2017) [ref 17] Neural encoding of stimulus probability in inferior temporal cortex

Low noise

High noise

Cell preferences in recorded population of IT cells :
61%  face > fruit
1% fruit > face

38%  no preference
However, the study does not identify the location of cells with respect to face
patches ML, AL or AM. It presumably includes a mixture of cells inside and
outside these patches.

Fluctuations in a monkey’s behavioural expectation of seeing a face
p(face)* were modelled statistically from its face/fruit choices across trials.

Trials in which a face was presented are grouped into three classes:

Expected Face if p(face)* > 0.66

Neutral face if 0.66 > p(face)* > 0.33

Unexpected Face if p(face)* < 0.33

Across the population, there was a greater response to unexpected faces
than expected faces. This finding is consistent with the principle of
predictive coding theory, that higher expectation of seeing a particular
feature will act to reduce the response of ERR units reporting that feature
to higher areas. Note that this was only observed for low noise stimuli, not
high noise stimuli.

But, not all cells should be ERR units: predictive coding theory envisages
that some cells explicitly encode expectations (EXP units). Is it possible to
discriminate EXP and ERR units..?

Cue stimulus
presentation period



Bell et al. (2017) [ref 17] Neural encoding of stimulus probability in inferior temporal cortex

face v fruit preference

Prediction
error

p(face)*

Time before / after cue onset (msec)

Regression analysis was used to model, for each cell, the contribution of three
factors to variation in the cell’s response across all trials:
• Stimulus preference for face v fruit;
• Prediction error, the discrepancy between expectation and the actual

stimulus presented;
• The level of expectation of seeing a face, p(face)*

spike rate = β0 + β1.stimulus + β2.error + β3.expectation

The relative values of the β1, β2 and β3 coefficients of these three factors vary
with changes in a cell’s spike rate before and after cue presentation.

The charts at left show correlations between these coefficients across the
population of recorded cells; the correlation was computed for all possible pairs
of time points between -500 and +500 msec from stimulus onset.

Upper chart: Encoding of face prediction error and stimulus identity were highly
correlated from 100 msec onward in the post-stimulus period; or, in other words,
“neurons that showed the strongest face responses also showed the greatest
difference in response magnitude between expected and unexpected face trials”.

Lower chart: Conversely, over the same time period, there is no significant
correlation between the extent to which neurons encode face prediction error
and face expectation.

The second finding is consistent with the predictive coding principle that distinct
populations of neurons encode predictions and prediction-errors (i.e. EXP v ERR
units). However, this is an indirect indication derived from population statistics;
the study did not succeed in explicitly identifying individual neurons as EXP or
ERR units.
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Issa et al. (2018) [ref 15]    Error responses to ‘scrambled’ face stimuli

Face > Object
Face < Object

ML

AL

PL
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Early             Late Early             Late Early             Late

prefer typical

prefer scrambled

ML ALPL

= error coding, ‘ERR’ units  

= prediction or expectation coding, ‘EXP’ units ? 

Issa et al. (2018) [ref 15]    Error responses to ‘scrambled’ face stimuli



Summary of these three face-processing studies formulating their findings in terms of predictive coding theory

Schwiedrzik & Freiwald (2017) Manipulate the animal’s state of expectation by training it to recognise sequentially presented pairs of face stimuli varying in view and
identity. They find that expected stimuli can elicit smaller responses than unexpected stimuli, as anticipated for cells signalling prediction errors (ERR units). However:

1. Unaccountably, they mis-classify the types of violation of expectation present in their test stimuli. This requires some guesswork to re-classify violations, but it is then
possible to re-interpret their findings as showing that (some) ML cells respond as if signalling error with respect to expected view, but irrespective of expcted identity.

2. Not all cells should be ERR units, but there is no systematic documentation of individual cell response properties (that might enable non-ERR units to be
distinguished);

3. The authors’ account of predictive coding theory (possibly influenced by their procedural error) largely neglects theoretical sources, and is highly misleading !

Bell et al. (2017) Manipulate the animal’s state of expectation by presenting stimuli in blocks that vary in their relative frequency of showing a face (or a fruit). They also
demonstrate that unexpected face stimuli produce larger responses, on average, across the population of recorded cells – again, as anticipated for cells signalling
prediction errors. These authors, however, are aware that predictive coding theory does not propose that all cells should signal prediction error. Some should encode
expectation (EXP units).

1. They use a sophisticated regression model to assess cells’ encoding of stimulus identity, the animal’s pre-stimulus state of expectation, and post-stimulus error.

2. This demonstrates that, across the population of recorded cells, there is little or no correlation between encoding of error and expectation; but no individual cells were
identified explicitly as ERR or EXP units.

Issa et al. (2018) This study is the only one of the three to record from several identified levels in the face hierarchy. It did not manipulate the animal’s state of
expectation per se. It attempted to measure the influence of ‘prediction’ in the sense of the current description of a visual stimulus provided by backward connections from
higher areas to lower areas. This represents a more naturalistic way of testing predictive coding theory.

1. It finds that a more ‘surprising’ (scrambled) face stimulus elicits less activity than a normal face in the highest face area, but can elicit more activity than a normal face
in some cells in two hierarchically lower face areas.

2. This finding is, once again, consistent with the predictive coding principle that backward-going signals should suppress activity in ERR units in a lower area. These
signals, in theory, are provided by EXP units in the highest area.

3. The greater activity in these (putative) ERR units can be rationalised as signalling how the scrambled face stimulus deviates from the prediction (or ‘description’) of a
normal face communicated by the highest area.

4. This error-signal, when present, was strongest at 100-130 msec post-stimulus onset; Cells that failed to show this signal but which, conversely, showed a growing
preference for the normal face stimulus over the scrambled face stimulus, at 100-130 msec, can be regarded as putative EXP units.



LEVEL (i-1) LEVEL (i) LEVEL (i+1)

Expectation  unit Error  unit Precision  unit

Schematic model of intrinsic & extrinsic wiring subserving predictive coding:
reciprocal exchange of prediction & precision (backward) & error (forward)
- e.g. as modelled by serial hierarchical connections between sensory cortical areas 

precision
precision

prediction prediction

error error

Reflections on agranular architecture: predictive coding in the motor cortex.         Shipp S, Trends in Neuroscience 36: 706-716 (2013)

excitatory connection inhibitory connection



Note on neural implementation of predictive coding (previous slide) 

1. This is all rather conjectural, an exercise in fitting the theoretical computational procedures of predictive coding to the known patterns of
intrinsic and extrinsic connectivity of the cortex.

2. The fundamental idea underlying predictive coding is that all perception is a guess (or hypothesis) – it has to be, because the retinal image
never provides information adequate to specify exactly what is present, where, in the visual field.

3. This ‘guessing’ is formalised as Bayesian inference: that what we perceive is ultimately a combination of sensory evidence and prior
knowledge, statistically optimised to trade off the the reliability of the sensory evidence against the weight of the expectation based on prior
experience.

4. The basic computational mechanism is that backward connections convey predictions (blue), and forward connections convey prediction
error (green); a second class of backward connection conveys ‘precision’ (red).

5. Correspondingly, there should be three discernible classes of pyramidal neurons: expectation (EXP) and precision units that are the source
of back projections, and error (ERR) units that are the source of forward projections.

6. The signals carried by the backward projections of EXP units can be regarded as predictions of the activity of EXP units at the level below.
7. The ERR units within a level compute the difference between the EXP units in the same level, and the prediction arriving from the level

above. The ERR signal is conveyed to the level above, where it modifies the activity of the EXP units at that level.
8. A simpler way of thinking about this is that the ERR units compute the difference between the sensory data reaching an area and the

prediction of that data provided by higher areas. Note that the difference is computed as a simple subtraction (data – prediction), so the
prediction should reach the ERR units via an inhibitory intrinsic relay.

9. The combined activity of EXP units across areas determines our percept of the image on the retina; the activity of ERR units has the effect
of modifying that percept.

10. Precision is a term used to describe the gain of the ERR signal (i.e. the ERR signal is boosted by high precision, and attenuated by low
precision). Precision therefore regulates the balance between expectation and sensory evidence (data) in determining what we see.

11. The various examples given of a prior hypothesis governing what we see, to resolve ambiguity or even to produce an illusion (e.g. that light
comes from above, that staircases do not have gaps, and that vertebrate heads are convex, not concave structures) would be rationalised
as circumstances where the prior hypothesis is very strong, and the precision applied to the ERR signal is not strong enough to allow
contrary sensory evidence to modify the representation of the hypothesis by EXP units in high level visual areas.

Glossary
Intrinsic connections are those within an area, extrinsic connections are those between areas
Pyramidal neurons are excitatory (i.e. use an excitatory neurotransmitter) as opposed to inhibitory interneurons 



Larkum et al (2009) Control of pyramidal neuron excitability by backward terminations upon apical dendrite [ref 18]

1

2

3A

3B

channels

PRECISION

EXP
unit

Interpretation of the Larkum mechanism in the context of
the neural implementation of predictive coding theory:
Layer 3 pyramids postulated to be similar to layer 5
pyramids; putative ERR units in layer 3 receive signals from
EXP units in their basal dendrites, and descending precision
signals in their apical dendrites

ERR 
unit

channels

1. Multiple, in vitro, intracellular recordings from pyramidal neurons with cell bodies in layer 5;
2. Spiking activity in the cell is initially activated by forward input to basal dendrites;
3. Spikes (action potentials) also ‘back-propagate’ into the apical dendritic tree (causing

depolarisation);
4. NMDA glutamate receptors in the apical dendritic arborisation require some initial

depolarisation in order to become sensitive to backward inputs;
5. The combined effect of backward input and back-propagation can ‘ignite’ Ca channels

situated in the base of the apical tuft;
6. The Ca channels can drive further cell spiking, and render the cell much more sensitive to

continued forward input.
7. Larkum describes this as a ‘coincidence-detection’ mechanism for the simultaneous arrival

of forward and backward input;
8. In terms of predictive coding theory, it allows backward signals to regulate the amplification,

or ‘gain’ of forward signals, as envisaged for precision. This is termed ‘apical amplification’.


